Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Edit posts | Sign Out

Scroll down and select country
MEBO TMAU TESTING CURRENTLY SUSPENDED INDEFINITELY

MEBO - UBIOME study 2018

'PRESS RELEASE'

NCT03582826
ClinicalTrials.gov

MEBO Gut Microbiome Study
"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"
Funded by uBiome Research Grant

"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"

Dynamics of the Gut Microbiota in
Idiopathic Malodor Production
& PATM

Started May 2018 - Ongoing

Current people sent kits : 100/100
3 kits per person

NO LONGER RECRUITING

Participation info : LINK English

MEBO Map Testing & Meetups


Full details : https://goo.gl/TMw8xu
want listed ? contact info@meboresearch.org

MEBO Private Facebook Group
to join : go to
or contact
Ubiome Gut EXPLORER
10% OFF

Update : discount is suspended
Join/Watch the weekly
BO Sufferers Podcasts

MEBO TMAU Videos

Petitions

TMAU Petition world
TMAU UK end total:262
TMAU UK ends 23/01/20
TMAU Petition USA end total 204
USA : Moveon open
TMAU (Dominican)
Metabolomic Profiling Study
NCT02683876

Start : Aug 2016
Stage 1 : 27 Canadian volunteers to test
Latest click here (26 oct) :
17 samples returned


Note : Stage 1 is Canada only.
Return cut-off date : passed
Analysis can take 6/8 weeks
Analysis start in/before Nov
MEBO Research is a
EURORDIS and
NORD Member Organization
See RareConnect

Popular Posts (last 30 days)

Upcoming get-togethers


Let us know if you want a meetup listed

Subscribe to Blog

Enter your email address:

Delivered by FeedBurner

You will be sent a verification email

Subscribe in a reader

Blog Archive

London TMAU meeting with Prof Liz Shephard
19th Oct 11am - 1pm
St Mary's Hospital
Praed St, Paddington
London W2 1NY
click to read more

MEBO Research Clinical Trials

Click here to read details of the MEBO Clinical Trials
NCT03582826 - Ongoing not recruiting
Microbial Basis of Systemic Malodor and PATM Conditions (PATM)
United States 2018 - ongoing

NCT02683876 - Completed
Exploratory Study of Relationships Between Malodor and Urine Metabolomics
Canada and United States 2016 - ongoing

NCT03451994 - Completed
Exploratory Study of Volatile Organic Compounds in Alveolar Breath
United Kingdom and United States 2013 - ongoing

NCT02692495 - Completed
Evaluation of Potential Screening Tools for Metabolic Body Odor and Halitosis
United Kingdom 2009 - 2012

Thursday, March 12, 2009

2008 paper on neuronal processing of body odor

Functional neuronal processing of body odors differs from that of similar common odors

Lundström JN, Boyle JA, Zatorre RJ, Jones-Gotman M.

Department of Psychology, McGill University, Montreal, QC, H3A1B1, Canada. jlundstrom@monell.org

2008 paper on the neuronal processing of body odor

At the moment, the reason why most people can't be smelt by some people is wide open to theories. This seems to include 'classic' external body odor (armpit body odor), rather than just metabolic body odor (where it seems to be mostly the norm).

The olfactory system seems to be the least understood sense, and so no answers seem forthcoming soon. The main areas of theory would likely be around the olfactory system itself, or that some 'non-smellers' carry the same toxins in their circulating system themselves, and so there may not a wide enough 'detection gap'. Who knows ?

On a similar note, recent research by a group of Swedish scientists (psychologists) came up with the conclusion that the olfactory system 'learns' neural pathway patterns, and recognises 'friends' 'body odor' (presumably the non-detectable type ?) and feels safe, whereas new peoples 'body odor' stimulates fear (?)
Visual and auditory stimuli of high social and ecological importance are processed in the brain by specialized neuronal networks. To date, this has not been demonstrated for olfactory stimuli. By means of positron emission tomography, we sought to elucidate the neuronal substrates behind body odor perception to answer the question of whether the central processing of body odors differs from perceptually similar nonbody odors. Body odors were processed by a network that was distinctly separate from common odors, indicating a separation in the processing of odors based on their source. Smelling a friend's body odor activated regions previously seen for familiar stimuli, whereas smelling a stranger activated amygdala and insular regions akin to what has previously been demonstrated for fearful stimuli. The results provide evidence that social olfactory stimuli of high ecological relevance are processed by specialized neuronal networks similar to what has previously been demonstrated for auditory and visual stimuli.

0 comments:

Post a Comment