Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Edit posts | Sign Out


March20 podcast Dr Hazen
anti-TMA pill in a year or 2 ? (scroll 12 mins)

Additional info:
MEBO Karen
at UK Findacure conf 2020

Scroll down and select country

MEBO Map Testing & Meetups

Full details :
want listed ? contact

MEBO - UBIOME study 2018



MEBO Gut Microbiome Study
"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"
Funded by uBiome Research Grant

"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"

Dynamics of the Gut Microbiota in
Idiopathic Malodor Production

Started May 2018 - Ongoing

Current people sent kits : 100/100
3 kits per person


Participation info : LINK English

MEBO Private Facebook Group
to join : go to
or contact
Join/Watch the weekly
BO Sufferers Podcasts



TMAU Petition world
TMAU UK end total:262
TMAU UK ends 23/01/20
TMAU Petition USA end total 204
USA : Moveon open
TMAU (Dominican)
Metabolomic Profiling Study

Start : Aug 2016
Stage 1 : 27 Canadian volunteers to test
Latest click here (26 oct) :
17 samples returned

Note : Stage 1 is Canada only.
Return cut-off date : passed
Analysis can take 6/8 weeks
Analysis start in/before Nov
MEBO Research is a
NORD Member Organization
See RareConnect TMAU

Popular Posts (last 30 days)

Upcoming get-togethers

Let us know if you want a meetup listed
Follow MeBOResearch on Twitter

Blog Archive

Denver TMAU Test Lab survey click here
click to Read more/less

USA survey for anyone who wants to improve Denver TMAU test

begun : Dec22
end : no ending for now

A trainee genetic counselor is working at the Denver TMAU test lab. Probably as part of her training. As a project she wishes feedback on any aspect of the Denver TMAU test and process. You can fill in the survey and/or email her (email address is in survey). It's meant for USA people, but perhaps others can give their view too (as we have so few opportunities).

quote from her rareconnect post

"Hello all! I wanted to make you aware of a research study being conducted to better understand the experience and needs of individuals with trimethylaminuria with a goal of being able to create improved patient and healthcare provider education materials. Any participation is completely voluntary and all responses remain confidential. Feel free to use the contact information within the link with any questions or share the survey with others with TMAU."

see this post for more details

Friday, March 6, 2009

FMO3 paper 2000 : Population-specific polymorphisms of the human FMO3 gene: significance for detoxication

Population-specific polymorphisms of the human FMO3 gene: significance for detoxication.

Human Biomedical Research Institute, San Diego, California, USA
Flavin-containing monooxygenase form 3 (FMO3) is one of the major enzyme systems that protect humans from the potentially toxic properties of drugs and chemicals. FMO3 converts nucleophilic heteroatom-containing chemicals and endogenous materials to polar metabolites, which facilitates their elimination. For example, the tertiary amine trimethylamine is N-oxygenated by human FMO3 to trimethylamine N-oxide, and trimethylamine N-oxide is excreted in a detoxication and deoderation process. In normal humans, virtually all trimethylamine is metabolized to trimethylamine N-oxide. In a few humans, trimethylamine is not efficiently metabolized to trimethylamine N-oxide, and those individuals suffer from trimethylaminuria, or fishlike odor syndrome. Previously, we identified mutations of the FMO3 gene that cause trimethylaminuria. We now report two prevalent polymorphisms of this gene (K158E and V257M) that modulate the activity of human FMO3. These polymorphisms are widely distributed in Canadian and Australian white populations. In vitro analysis of wild-type and variant human FMO3 proteins expressed from the cDNA for the two naturally occurring polymorphisms showed differences in substrate affinities for nitrogen-containing substrates. Thus, for polymorphic forms of human FMO3, lower kcat/Km values for N-oxygenation of 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl) phenothiazine, trimethylamine, and tyramine were observed. On the basis of in vitro kinetic parameters, human FMO1 does not significantly contribute to human metabolism of trimethylamine or tyramine. The results imply that prevalent polymorphisms of the human FMO3 gene may contribute to low penetrance predispositions to diseases associated with adverse environmental exposures to heteroatom-containing chemicals, drugs, and endogenous amines.
Full paper : Population-specific polymorphisms of the human FMO3 gene: significance for detoxication


Post a Comment