Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Edit posts | Sign Out
March20 podcast Dr Hazen
anti-TMA pill in a year or 2 ? (scroll 12 mins)

Additional info: https://youtu.be/811v7RLXP9M
MEBO Karen
at UK Findacure conf 2020

Scroll down and select country
MEBO TMAU TESTING DISCONTINUED
(2012-2017)

MEBO Map Testing & Meetups


Full details : https://goo.gl/TMw8xu
want listed ? contact info@meboresearch.org

MEBO - UBIOME study 2018

'PRESS RELEASE'

NCT03582826
ClinicalTrials.gov

MEBO Gut Microbiome Study
"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"
Funded by uBiome Research Grant

"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"

Dynamics of the Gut Microbiota in
Idiopathic Malodor Production
& PATM

Started May 2018 - Ongoing

Current people sent kits : 100/100
3 kits per person

NO LONGER RECRUITING

Participation info : LINK English

MEBO Private Facebook Group
to join : go to
or contact
Join/Watch the weekly
BO Sufferers Podcasts

MEBO TMAU Videos

Petitions

TMAU Petition world
TMAU UK end total:262
TMAU UK ends 23/01/20
TMAU Petition USA end total 204
USA : Moveon open
TMAU (Dominican)
Metabolomic Profiling Study
NCT02683876

Start : Aug 2016
Stage 1 : 27 Canadian volunteers to test
Latest click here (26 oct) :
17 samples returned


Note : Stage 1 is Canada only.
Return cut-off date : passed
Analysis can take 6/8 weeks
Analysis start in/before Nov
MEBO Research is a
EURORDIS and
NORD Member Organization
See RareConnect

Popular Posts (last 30 days)

Upcoming get-togethers


Let us know if you want a meetup listed

Subscribe to Blog

Enter your email address:

Delivered by FeedBurner

You will be sent a verification email

Subscribe in a reader

Blog Archive

MEBO Research Clinical Trials

Click here to read details of the MEBO Clinical Trials
NCT03582826 - Ongoing not recruiting
Microbial Basis of Systemic Malodor and PATM Conditions (PATM)
United States 2018 - ongoing

NCT02683876 - Completed
Exploratory Study of Relationships Between Malodor and Urine Metabolomics
Canada and United States 2016 - ongoing

NCT03451994 - Completed
Exploratory Study of Volatile Organic Compounds in Alveolar Breath
United Kingdom and United States 2013 - ongoing

NCT02692495 - Completed
Evaluation of Potential Screening Tools for Metabolic Body Odor and Halitosis
United Kingdom 2009 - 2012

Wednesday, August 22, 2012

Korean lab produces a trimethylamine enose for the food industry

trimethylamine enose
Korean paper on TMA enose : click to read abstract
A 'bioelectronic' enose that detects trimethylamine (TMA) levels has been constructed by scientists in a lab is Seoul. It is designed to detect fish spoilage in the food industry, but perhaps it could be adapted for people with trimethylaminuria (TMAU).

When fish spoils, the trimethylamine-oxide in the fish is decayed by bacteria into trimethylamine, which gives the odorous rotting fish smell. In TMAU, it is trimethylamine that causes the odor, although perhaps TMAU does not fully explain the range of odors in someone with a FMO3 enzyme issue. However it would seem trimethylamine is an excellent biomarker of FMO3 function if it is being produced in a person's gut.

Apparently the sensor was 'simply manufactured' and is 'portable' so it seems that a small application for humans may be a reality in the future.


Abstract
We herein report a peptide receptor-based bioelectronic nose (PRBN) that can determine the quality of seafood in real-time through measuring the amount of trimethylamine (TMA) generated from spoiled seafood. The PRBN was developed using single walled-carbon nanotube field-effect transistors (SWNT-FETs) functionalized with olfactory receptor-derived peptides (ORPs) which can recognize TMA and it allowed us to sensitively and selectively detect TMA in real-time at concentrations as low as 10fM. Utilizing these properties, we were able to not only determine the quality of three kinds of seafood (oyster, shrimp, and lobster), but were also able to distinguish spoiled seafood from other types of spoiled foods without any pretreatment processes. Especially, the use of small synthetic peptide rather than the whole protein allowed PRBNs to be simply manufactured through a single-step process and to be reused with high reproducibility due to no requirement of lipid bilayers. Furthermore, the PRBN was produced on a portable scale making it effectively useful for the food industry where the on-site measurement of seafood quality is required.

Abstract : A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality

MEBO Research

0 comments:

Post a Comment