MEBO Private Facebook Group
to join : contact
maria.delatorre@meboresearch.org

MEBO Map Testing & Meetups


Full details : https://goo.gl/TMw8xu
want listed ? contact map@meboresearch.org

MEBO TMAU urine test

MEBO Research
TMAU Urine Test
United States only
PROGRAM IS PERMANENTLY SUSPENDED AS OF 2 MAY 2017

Click here for
REQUISITION FORM
Incomplete applications
will NOT be processed

SEE UPDATES HERE

1
test
$150 plus
shipping costs
2
tests
$250 plus
shipping costs

TWO PAYMENT PLAN OPTION
Send email to maria.delatorre@meboresearch.org to arrange, AFTER filling out Requisition Form, please.

Test analysis performed in batches of 20 or more

DATE: 2 MAY 2017
Currently on : PROGRAM IS TEMPORARILY SUSPENDED

Samples analyzed since June 2012 :
352
Metabolomic Profiling Study
NCT02683876

Start : Aug 2016
Stage 1 : 27 Canadian volunteers to test
Latest click here (26 oct) :
17 samples returned


Note : Stage 1 is Canada only.
Return cut-off date : passed
Analysis can take 6/8 weeks
Analysis start in/before Nov
MEBO Research is a
EURORDIS and
NORD Member Organization
See RareConnect
BannerFans.com
RESEARCH DETAILS

DONATIONS THRU 31-NOV-2016:
£ 943.03/GBP
$ 568.00/USD

TOTAL at today's ROE
£0.80/GBP = $1.00/USD

£1,398.07 = $1,745.14

MEBO UK PAYPAL FOR TRINZYME

********
MEBO US PAYPAL FOR TRINZYME

Your currency will be automatically converted to USD or GBP by PayPal.

Option: pay with your credit card instead of PayPal account by clicking on either Donate button above.

Popular Posts (last 30 days)

Upcoming get-togethers


Let us know if you want a meetup listed

Subscribe to Blog

Enter your email address:

Delivered by FeedBurner

You will be sent a verification email

Subscribe in a reader

Blog Archive

Friday, February 13, 2009

1983 review paper: The Diagnostic Potential of Breath Analysis

Approximately 200 compounds have been detected in human breath, some of which have been correlated to various diseases. With the advent of new technology that may permit the rapid analysis of breath, further progress can be anticipated in the use of breath metabolites for the diagnosis of disease, including neonatal screening, toxicology, and metabolic disease.
This 1983 paper is of interest mainly because of it's lists (which may or may not be outdated), demonstrating the potential of detecting compounds through breath. Particularly from alveolar breath, which is breath from the lungs that is being exhaled from the system. Such as the way breathalyzers detect alcohol. The lists demonstrate the authors thoughts on potential compounds that could be detected at the time. Trimethylamine gets a brief mention.

Breath analyzers certainly seem a potentially useful tool in diagnosing systemic body odor and both types of halitosis. Perhaps someday there may even be portable breathalyzers for the detection of compounds such as trimethylamine, so that sufferers can monitor their trimethylamine levels. Or trimethylamine test papers so that urine can be easily tested. Perhaps this sort of technology is already out there but they don't realise there is a market.

The metabolites excreted in the breath may be divided into five groups:

1. Lipid degradation products: Numerous diseases will affect the concentration of total serum fatty acid or the fatty acid chromatographic pattern in the breath. Breath acetone has already been shown to be useful in monitoring diabetes(13).
2. Aromatic compounds: Toluene and other alkylbenzenes, furan, naphthalene, and p-tolualdehyde have been detected in the breath (9-11). The origin of these compounds in the breath is generally not known.
3. Thio compounds: Methanethiol, ethanethiol, dimethylsulfides, and, in smaller concentrations, higher alkanethiol and alkylsulfides are present in human breath (9-11). Increased concentrations of specific thio-compounds have already been shown to have diagnostic significance in cirrhosis(14, 15) and ovulation (16).
4. Ammonia and amines: Ammonia would be expected to be increased in hepatic disease (although serum ammonia does not correlate well with hepatic coma) (17). Dimethylamine and triethylamine are increased in uremia (18).
5. Halogenated compounds: These are probably derived from inhaled, injected, or absorbed environmental pollutants and are of interest in industrial toxicology (8).

http://www.clinchem.org/cgi/reprint/29/1/5

0 comments:

Post a Comment