Admin Control Panel

New Post | Settings | Change Layout | Edit HTML | Edit posts | Sign Out

Scroll down and select country
MEBO TMAU TESTING CURRENTLY SUSPENDED INDEFINITELY

MEBO - UBIOME study 2018

'PRESS RELEASE'

NCT03582826
ClinicalTrials.gov

MEBO Gut Microbiome Study
"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"
Funded by uBiome Research Grant

"Microbial Basis of Systemic Malodor and PATM Conditions (PATM)"

Dynamics of the Gut Microbiota in
Idiopathic Malodor Production
& PATM

Started May 2018 - Ongoing

Current people sent kits : 100/100
3 kits per person

NO LONGER RECRUITING

Participation info : LINK English

MEBO Map Testing & Meetups


Full details : https://goo.gl/TMw8xu
want listed ? contact info@meboresearch.org

MEBO Private Facebook Group
to join : go to
or contact
Join/Watch the weekly
BO Sufferers Podcasts

MEBO TMAU Videos

Petitions

TMAU Petition world
TMAU UK end total:262
TMAU UK ends 23/01/20
TMAU Petition USA end total 204
USA : Moveon open
TMAU (Dominican)
Metabolomic Profiling Study
NCT02683876

Start : Aug 2016
Stage 1 : 27 Canadian volunteers to test
Latest click here (26 oct) :
17 samples returned


Note : Stage 1 is Canada only.
Return cut-off date : passed
Analysis can take 6/8 weeks
Analysis start in/before Nov
MEBO Research is a
EURORDIS and
NORD Member Organization
See RareConnect

Popular Posts (last 30 days)

Upcoming get-togethers


Let us know if you want a meetup listed

Subscribe to Blog

Enter your email address:

Delivered by FeedBurner

You will be sent a verification email

Subscribe in a reader

Blog Archive

London TMAU meeting with Prof Liz Shephard
19th Oct 11am - 1pm
St Mary's Hospital
Praed St, Paddington
London W2 1NY
click to read more
more details : karen.james@meboresearch.org

MEBO Research Clinical Trials

Click here to read details of the MEBO Clinical Trials
NCT03582826 - Ongoing not recruiting
Microbial Basis of Systemic Malodor and PATM Conditions (PATM)
United States 2018 - ongoing

NCT02683876 - Completed
Exploratory Study of Relationships Between Malodor and Urine Metabolomics
Canada and United States 2016 - ongoing

NCT03451994 - Completed
Exploratory Study of Volatile Organic Compounds in Alveolar Breath
United Kingdom and United States 2013 - ongoing

NCT02692495 - Completed
Evaluation of Potential Screening Tools for Metabolic Body Odor and Halitosis
United Kingdom 2009 - 2012

Thursday, February 10, 2011

New review of FAD-dependent enzymes including FMO3

Readers will know that published TMAU papers are very rare but it seems there is slightly more interest in the enzyme that causes genetic TMAU, that is enzyme FMO3. FMO3 is probably involved in many drug metabolizing processes, but currently seems to be overlooked by the pharma industry. This new review is written by a researcher at a smaller pharma company based in Belgium. Only the abstract is free to view. FMO3 is dependent on flavin adenine dinucleotide (FAD), which it gets from modifying riboflavin (vitamin B2). This is why taking B2 is sometimes suggested for those with genetic TMAU to see if it can stimulate any residual FMO3. Whether it is effective in any cases or at all is not known.

There are quite a few FAD dependent enzymes that oxidize compounds, which this article elaborates on. Most of these articles are greatly involved in detoxifying or activating compounds in the body and are especially present in the liver. The group of CYP enzymes (which are not FAD dependent, and depend on a niacin derivative)are usually regarded the important toxin/activation oxidizing 'players', so it is nice to see FMO3 get a mention.

Ann Pharm Fr. 2011
FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics.
Strolin Benedetti M.

UCB Pharma SA, 420, rue d'Estienne-d'Orves, 92705 Colombes, France.
Abstract

Although the majority of oxidative metabolic reactions are mediated by the CYP superfamily of enzymes, non-CYP-mediated oxidative reactions can play an important role in the metabolism of xenobiotics. Among the major oxidative enzymes, other than CYPs, involved in the oxidative metabolism of drugs and other xenobiotics, the flavin-containing monooxygenases (FMOs), the molybdenum hydroxylases [aldehyde oxidase (AO) and xanthine oxidase (XO)] and the FAD-dependent amine oxidases [monoamine oxidases (MAOs) and polyamine oxidases (PAOs)] are discussed in this minireview. In a similar manner to CYPs, these oxidative enzymes can also produce therapeutically active metabolites and reactive/toxic metabolites, modulate the efficacy of therapeutically active drugs or contribute to detoxification. Many of them have been shown to be important in endobiotic metabolism (e.g. XO, MAOs), and, consequently, interactions between drugs and endogenous compounds might occur when they are involved in drug metabolism. In general, most non-CYP oxidative enzymes (e.g. FMOs, MAOs) appear to be noninducible or much less inducible than the CYP system. Some of these oxidative enzymes exhibit polymorphic expression, as do some CYPs (e.g. FMO3). It is possible that the contribution of non-CYP oxidative enzymes to the overall metabolism of xenobiotics is underestimated, as most investigations of drug metabolism have been performed using experimental conditions optimised for CYP activity, although in some cases the involvement of non-CYP oxidative enzymes in xenobiotic metabolism has been inferred from not sufficient experimental evidence.

Abstract on Pubmed

0 comments:

Post a Comment